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A B S T R A C T

Accurate quantification of terrestrial evapotranspiration (ET) is essential to understanding the interaction
between land and atmosphere, as well as the feedback response of vegetation dynamics. In our previous work, a
physically based ecohydrological model called the simple terrestrial hydrosphere (SiTH) model was developed
to estimate ET and the other ET-related variables based on the groundwater–soil–plant–atmosphere continuum
(GSPAC). However, the SiTH model (SiTHv1) still has some deficiencies in the model structure and parameters,
which can result in potential uncertainty in the estimation of terrestrial ET. In this study, we aimed to address
these limitations by developing a new version of the SiTH model (SiTHv2). The main modifications of the
SiTHv2 model include: (1) the vegetation moisture constraint module is updated with vegetation optical depth
observations; (2) the critical model parameters associated with root distribution are constrained using flux
observations; (3) the soil module is extended to a three-layer module with 5 m of total depth; (4) an irrigation
input water strategy is applied in the cropland areas; and (5) the latest ERA5-Land reanalysis data with a finer
spatial resolution are used as the meteorological forcing data. The estimated ET of the SiTHv2 model was
validated/compared at multiple scales (i.e., site/plot, basin, and global) with flux data, basin water balance
data, and other mainstream global ET products, respectively. The results demonstrate that the SiTHv2 model
performs better than the SiTHv1 model, with an improvement in the overall model root-mean-square error
of 0.66 mm day−1 (plot scale) and 98.58 mm year−1 (basin scale), representing 27% and 22% improvements
over the SiTHv1 model in the same circumstances, respectively. In addition, the performance of the SiTHv2
model ranks well when compared to the existing terrestrial ET models and products. The improvements to
the SiTH model should allow improved estimation of terrestrial ET and provide support to potential studies
in water transfer within the GSPAC.
1. Introduction

Terrestrial evapotranspiration (ET) is a crucial nexus that is tightly
coupled with the global water cycle and energy balance (Oki and
Kanae, 2006). About 65% of land precipitation is supplied by the
terrestrial ET process (Ma et al., 2021; Dorigo et al., 2021), which
concomitantly consumes more than 50% of the net solar radiation
received by the land surface (Trenberth et al., 2009). In recent decades,
much effort has been devoted to estimating large-scale terrestrial ET
using ecohydrological models and remote sensing technology (Fisher
et al., 2008; Jung et al., 2019; Ma et al., 2019; Martens et al., 2017;
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Mu et al., 2011). Accurate estimation of terrestrial ET fluxes is a key
goal of the ecohydrological community and benefits many scientific
fields and practical applications, such as studies of the water/carbon
cycle under the scenario of climate change (Frankenberg et al., 2011;
Held and Soden, 2006; Ma and Zhang, 2022; Zhou et al., 2021), the
detection of extreme events (Miralles et al., 2019; Teuling et al., 2010),
and agricultural water management (Allen et al., 2011; Xu et al., 2020).

Despite the sustained advances in global ET modeling that have
been achieved over the past few decades (Ma et al., 2021; Pan et al.,
2020; Wang and Dickinson, 2012; Zhang et al., 2016), there is still a
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need to characterize the ET processes in a more realistic and detailed
manner, thereby improving ET estimation overall. Among the different
models, the simple terrestrial hydrosphere (SiTH) model (Zhu et al.,
2019) was proposed to simulate the terrestrial ET process within the
context of the groundwater–soil–plant–atmosphere continuum (GSPAC)
(Scanlon and Kustas, 2012). In brief, the SiTH model depicts an inte-
grated water path between vegetation canopy and groundwater, and is
one of the few global ET models that considers the effect of ground-
water in the root zone in regulating soil moisture conditions (Fan,
2015), which can mitigate the impact of drought in areas with a
shallow groundwater depth (Gou and Miller, 2014). Another significant
feature in the SiTH model is the ability to adjust the allocation of
potential plant transpiration to different soil layers, combined with root
distribution and soil water conditions. Chen et al. (2022) reported that
the SiTH model performed well compared to other process-based global
ET models for estimating the different ET components, such as soil
evaporation, plant transpiration, and canopy intercepted evaporation,
across various plant functional types (PFTs).

Nevertheless, there are still some limitations to the SiTH model.
Firstly, the previous SiTH model (SiTHv1) did not take the plant mois-
ture status into account, which can lead to potential over-estimation
when estimating ET, due to the weak moisture constraint, especially
in forest ecosystems (Chen et al., 2020). Fortunately, microwave-based
remote sensing technology has the capacity to monitor plant water
content via the indicator of vegetation optical depth (VOD), which is
based on the attenuation of passive and active microwave observations
yielded by vegetation (Jackson and Schmugge, 1991; Moesinger et al.,
2020; Owe et al., 2008). In this present study, we attempted to in-
corporate VOD into the SiTH model, in order to better characterize
water stress for vegetation growth. Secondly, the SiTHv1 model regards
precipitation to be the only source of input water applied to cropland.
However, around 40% of the global cropland is made up of irrigated
land, which contributes 60% of the global food supply and concurrently
consumes approximately 70% of the global freshwater withdrawal from
the surface/subsurface water system (Foley et al., 2011; Siebert and
Döll, 2010). Thus, an irrigation water use (IWU) scheme is introduced
in the updated SiTH model, based on the authors’ prior work on
satellite-based global IWU estimation (Zhang et al., 2022). Thirdly,
plant transpiration generally dominates the total ET (Jasechko et al.,
2013), and is typically governed by the soil water availability and
the root distribution, which are given as empirical parameters in the
SiTHv1 model. Hence, in the updated SiTH model, the soil module
is changed to three layers, and the total depth is extended to 5 m,
allowing the model to cover the majority of the global root depths
for the various PFTs (Canadell et al., 1996; Maeght et al., 2013). In
addition, the fundamental parameters related to plant root distribution
are optimized using global flux observations. Lastly, the meteorological
forcing data are replaced by the fifth generation of European reanalysis
data (ERA5-Land, hereafter referred to as ERA5L) to run this updated
SiTH model at a global scale. The ERA5L product is a state-of-the-art
reanalysis product developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF), which offers spatio-temporally
continuous data at a finer spatial resolution (0.1◦ globally).

The focus of this study was to present an updated version of the
iTH model (SiTHv2), which includes: (1) modification of the model
tructure with new features; (2) multi-scale validation of the SiTHv2
odel using eddy covariance flux measurements and basin-scale water

alance estimates; and (3) a global comparison of the SiTH-based ET
stimates with other mainstream global ET products, in terms of mag-
itude and trend changes. In addition, we produced a global daily ET
ataset with a spatial resolution of 0.1◦, based on the newly modified
2

iTHv2 model. s
2. Methods

2.1. Model development

In the previous version (Zhu et al., 2019), the SiTH model was
proposed for continuous modeling of the water path in the GSPAC
(Fig. 1). The total ET estimated from the SiTH model is the sum of
the bare soil evaporation (𝐸s), plant transpiration (𝑇r), and canopy
intercepted evaporation (𝐸i). It is worth noting that the water stress
on 𝐸s is constrained by the first soil layer, while 𝑇r is constrained by
both the multiple soil layers and the groundwater (if the groundwater
can recharge to the root zone).

𝐸𝑇 = 𝐸i + 𝐸s + 𝑇r (1)

𝐸i = 𝑓wet ⋅ 𝛼 ⋅
𝛥

𝛥 + 𝛾
⋅
𝑅nc
𝜆

(2)

𝐸s = 𝑓sm ⋅ 𝛼 ⋅
𝛥

𝛥 + 𝛾
⋅
𝑅ns − 𝐺

𝜆
(3)

𝑇r =
(

1 − 𝑓wet
)

⋅ 𝑓v ⋅ 𝑓t ⋅

[ 𝑛
∑

𝑖=1

(

𝑓smv,i ⋅ 𝑇ps,i
)

+
𝑛
∑

𝑖=1

(

𝑇pg,i
)

]

(4)

where 𝛼 is the Priestly–Taylor coefficient, which is set to 1.26; 𝛥 is
the slope of the saturated vapor pressure curve (kPa ◦C−1); 𝛾 is the
psychrometric constant, which is set to 0.066 (kPa ◦C−1); 𝜆 is the latent
heat of evaporation (MJ kg−1); 𝐺 is the soil heat flux (W m−2); and 𝑛 is
the total number of soil layers (𝑛 = 3) in the SiTHv2 model. 𝑅ns and 𝑅nc
are the net radiation (𝑅n) allocated to the bare soil and canopy surface
(W m−2), respectively, which are complementary (𝑅n = 𝑅nc+𝑅ns). Their
calculation is conducted according to 𝑅ns = 𝑅n exp(−𝑘𝑅n

LAI) (Beer,
852; Fisher et al., 2008), where 𝑘𝑅n

is the extinction coefficient, which
s set to 0.6 (Impens and Lemeur, 1969). 𝑇ps,i and 𝑇pg,i are the potential
ranspiration from the unsaturated 𝑖th layer and saturated 𝑖th layer,
hich can be derived from the total potential ET by considering the
ertical distributions of plant roots and the depth of the groundwater
able (see details in Zhu et al., 2019). The 𝑓 -functions are the different
onstraints on the potential evaporation and transpiration, where 𝑓wet
s the relative surface wetness, 𝑓v is the vegetation water stress on
he plant transpiration, 𝑓sm is the soil moisture constraint on the bare
oil evaporation, 𝑓smv,i is the soil moisture constraint on the plant

transpiration at the 𝑖th soil layer, and 𝑓t is the temperature constraint
on plant growth. Among the different constraints, 𝑓wet , 𝑓t , and 𝑓sm can
e calculated as:

wet = min
{

𝜒 ⋅
𝑆c
𝑇p

, 1
}

(5)

𝑓t = exp

[

−
(𝑇a − 𝑇opt

𝑇opt

)2]

(6)

𝑓sm =

⎧

⎪

⎨

⎪

⎩

0, 𝑖𝑓 𝜃i ≤ 𝜃wp
𝜃i−𝜃wp
𝜃fc−𝜃wp

, 𝑖𝑓 𝜃wp < 𝜃i < 𝜃fc

1, 𝑖𝑓 𝜃i ≥ 𝜃fc

(7)

where 𝑇p is the potential transpiration rate of the canopy; 𝜒 is the
ractional interception occurring during daytime, which is set to 0.7;
c is the water storage capacity of the canopy, which is defined as

he product of precipitation and the leaf area index (LAI); 𝑇a is the air
emperature (◦C); 𝑇opt is the optimum plant growth temperature (◦C),
hich can be defined as the air temperature when the product of LAI,
n, and 𝑇a is the highest during the growing season; 𝜃fc is the soil field
apacity; 𝜃wp is the soil moisture at the wilting point; and 𝜃i is the actual
oil moisture at the 𝑖th soil layer (the first soil layer is only considered
or the soil evaporation).

Notably, the critical threshold (𝜃c) for soil moisture in the SiTH
odel is the multifactor-influenced parameter representing the state

t which soil moisture begins to have a constraint on plant tran-
piration, which dominates the transpiration changes in transitional
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Fig. 1. Schematic representation of the hydrologic process in the SiTH model. Case 1 represents the groundwater table being below the root zone; Case 2 represents the groundwater
table being within the third soil layer; Case 3 and Case 4 represent the groundwater table being within the second and first soil layer, respectively. The arrows indicate the water
flux direction.
regimes (Schwingshackl et al., 2017; Wang et al., 2022). Instead of only
considering the soil type as a static constant, as in the SiTHv1 model,
we revised the expression of (𝜃c) in the SiTHv2 model to reflect the
characteristic water stress sensitivities for different PFTs, according to
Purdy et al. (2018) and van Diepen et al. (1989):

𝜃c = (1 − 𝑝)
(

𝜃fc − 𝜃hwp
)

+ 𝜃hwp (8)

𝑝 = 1
1 + 𝐸𝑇p

− 𝑏
1 +𝐻c

(9)

𝜃hwp = 𝜃wp∕𝑘 (10)

where 𝑘 is a sensitivity index for the soil water content, which can
be determined as the square root of the canopy height (𝐻c); 𝜃hwp is
the adjusted wilting point for soil moisture when considering 𝐻c; 𝑝
is a parameter for regulating 𝜃c between 𝜃fc and 𝜃hwp, which can be
determined by the potential ET (𝐸𝑇p) and 𝐻c; and 𝑏 denotes the weight
of 𝐻c on 𝜃c, which is set to 0.1. Thus, the soil moisture constraint
function for plant transpiration at the 𝑖th layer (𝑓smv,i) can be expressed
as follows (Martens et al., 2017):

𝑓smv,i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑖𝑓 𝜃i ≤ 𝜃hwp

1 −
(

𝜃c−𝜃i
𝜃c−𝜃hwp

)𝑘
, 𝑖𝑓 𝜃hwp ≤ 𝜃i ≤ 𝜃c

1, 𝑖𝑓 𝜃i ≥ 𝜃c

(11)

Fig. 2 illustrates a concept map of the response of 𝑓smv to the
gradients of soil water content under different biotic and abiotic con-
ditions (i.e., 𝐻 and 𝐸𝑇 ). Clearly, the soil water constraint scheme for
3

c p
transpiration adopted by the SiTHv1 model (yellow line) is simplified
as a logarithmic function to soil water content, where 𝑓smv decreases
rapidly from the critical point of soil moisture. However, the new
constraint scheme in the SiTHv2 model provides a wide range of 𝑓smv
to a specific value of 𝜃, based on different 𝐻c and 𝐸𝑇p values, which
is more in line with the real situation of vegetation (e.g., forest or
grassland), where the sensitivity to soil moisture varies over different
plant heights with specific environmental conditions.

Furthermore, the plant transpiration estimated by the SiTHv1 model
is not constrained by the moisture content of the vegetation status.
To address this issue, we added a plant water stress module based
on the microwave remotely sensed VOD. It has been well documented
that VOD is closely related to the density, type, and water content of
vegetation, and is advantageous for monitoring tropical forest without
the effect of cloud (Liu et al., 2011, 2015). In the SiTHv2 model, the
vegetation water stress (𝑓v) is described as follows:

𝑓v =

√

VOD
VODmax

(12)

where VODmax is the maximum value for the annual VOD time series
at each pixel.

In addition, to better estimate the ET from irrigated cropland, we
introduced an IWU scheme into the SiTHv2 model. The irrigation signal
can be first identified by the discrepancy between the dynamic changes
of soil moisture and precipitation in the irrigated area. The volume
of the IWU can then be derived based on the balanced relationship
of the soil water variations (Zhang et al., 2022). The IWU estimates
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Fig. 2. Schematic diagram of the soil water constraint on transpiration in SiTHv2
by considering the different vegetation height and environmental conditions. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

were obtained from the authors’ prior work, and were integrated into
the SiTH model as exceptional input water applied to the cropland.
Specifically, the original monthly IWU estimates for global irrigated
land were simply dispersed to the start, the middle, and the end of a
month by weighting of the distribution density of the LAI. This can be
expected to enhance the water supply in the irrigated regions during
the growing season, especially at a long-term time scale (i.e., monthly
or yearly).

2.2. Parameter optimization scheme

In the SiTHv2 model, the soil layer is extended to a total depth
of 5 m, to better accommodate the root zone of forest. Thus, we
re-optimized two critical parameters, D50 and D95, which are funda-
mental for representing at least 50% or 95% of the root system above
the depth of D50 or D95, respectively. Based on the observed ET at each
eddy covariance (EC) flux station, we used the differential-evolution
Markov chain (DE-MC) algorithm (Ter Braak and Vrugt, 2008) to obtain
the posterior distribution of D50 and D95 globally. In general, the
posterior distribution of the candidate parameter sets (𝜙) in a Bayesian
framework can be expressed as:

𝑓
(

𝜙 ∣ 𝐸𝑇obs
)

= 𝑓 (𝜙)
𝑇
∏

𝑡=1

1
√

2𝜋𝜎2
exp

(

−

(

𝐸𝑇sim(𝜙; 𝑡) − 𝐸𝑇obs(𝑡)
)2

2𝜎2

)

(13)

where 𝑓 (𝜙) represents the prior parameter distributions; 𝑓 (𝜙 ∣ 𝐸𝑇obs))
represents the posterior parameter distributions; 𝑡 is the time step
(i.e., days); 𝑇 is the total number of observations/simulations; 𝐸𝑇obs is
the observed ET data at the flux station; 𝐸𝑇sim is the simulated ET from
the SiTHv2 model; and 𝜎 is the standard deviation of the model error.
In the DE-MC algorithm, the parameter proposals (𝜙p) are generated
based on two randomly selected chains (𝜙r1 and 𝜙r2), and the difference
is multiplied by a scaling factor (𝜌) and added to the current chain (𝜙i):

𝜙p = 𝜙i + 𝜌
(

𝜙r1 − 𝜙r2
)

+ 𝑒 (14)

where the scaling factor 𝜌 can be set to 2.38
√

2𝑑, and 𝑑 is the dimension
of parameter sets; and 𝑒 is selected from a symmetrical distribution and
represents a probabilistic acceptance rule in the DE-MC algorithm.

Specifically, in this study, we performed 12 chains in parallel with
a total of 10000 iterations, including a burn-in time of 500 iterations.
During the optimization, five-fold cross-validation was utilized in the
4

parameter optimization approach. The flux data were divided into five
subsamples, with one subsample preserved as the data for validating
the model, while the remaining four subsamples were used as the target
function. This cross-validation procedure was repeated five times, and
the results were then averaged to obtain an optimal solution for each
site. This strategy maximizes the data utilization and can mitigate
the overfitting and selection bias in the optimization. In addition,
we employed a double-optimization scheme to implement parameter
optimization at the PFT scale. This means that the optimal solutions
for each site were first optimized using the site-observed ET as the
target, to achieve the best root-mean-square error at the site level (S-
RMSE). The optimal parameters for the individual PFTs could then be
determined based on the posterior distribution of the parameters closest
to the obtained S-RMSE for a particular PFT (Zhang et al., 2019b).
This procedure ensured that the optimized parameters were optimally
balanced in each PFT-specific site, even though the length of the valid
data varied from site to site. The estimated posterior distribution of D50
and D95 for the different PFTs are given in Appendix (Fig. A.1).

2.3. Model performance evaluation metrics

To ensure that the ET-related variables can reach equilibrium, a
50 year spin-up was carried out by repeating the forcing from 2001
to 2005 10 times. The model was then run at the end of the spin-up to
generate the global ET estimates. We also employed several statistical
metrics to quantify the model performance in this study. Among the
different metrics, a Taylor diagram was used to show the differences
between the SiTHv2 and SiTHv1 models across multiple flux sites and
PFTs. In a Taylor diagram, the model performance can be characterized
as a comprehensive indicator, the Taylor skill score (TS-score), which
is based on the correlation coefficient (𝑅) and the normalized standard
deviation (Zhang et al., 2017). Thus, each point in a Taylor diagram
can be scored as:

𝑆 =
2(1 + 𝑅)

[(

𝜎s∕𝜎o
)

+ 1∕
(

𝜎s∕𝜎o
)]2

(15)

where 𝑆 is the TS-score bounded by zero and unity, where unity
represents perfect agreement with the observation; and 𝜎s and 𝜎o are
the standard deviations of the simulation and observation, respectively.
The root-mean-square error (RMSE) and the Nash–Sutcliffe efficiency
coefficient (NSE) were also included in the statistical analysis for
the comparison of the various ET models/products. These metrics are
calculated as follows:

RMSE =

√

√

√

√
1
𝑇

𝑇
∑

𝑡=1
[𝑂(𝑡) −𝑀(𝑡)]2 (16)

NSE = 1 −
∑𝑇

𝑡=1[𝑂(𝑡) −𝑀(𝑡)]2
∑𝑇

𝑡=1[𝑂(𝑡) − �̄�]2
(17)

where 𝑂(𝑡) and 𝑀(𝑡) are the observed and simulated data at time 𝑡,
respectively; and �̄� is the mean value of the observed data. In general,
the better the model performance, the lower the value of the RMSE and
the closer the NSE value is to 1.

3. Data

3.1. Eddy covariance data

We used the observed meteorological and flux data from 175 EC
stations globally (see Table S1 in the Supplementary information) to
optimize the candidate parameters and evaluate model performance
at the plot scale. These data were obtained from the FLUXNET2015
dataset (Pastorello et al., 2020) and contain 12 kinds of major PFTs
under different climate zones (Fig. 3). It should be noted that quality
control of the flux data is necessary before using these data in the
parameter optimization procedure. The flux data (half-hourly) were
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Fig. 3. Global distribution of the EC stations used in this study. The PFTs are according to the International Geosphere–Biosphere Programme (IGBP) ecosystem surface classification
system. CRO: croplands; CSH: closed shrublands; DBF: deciduous broadleaf forest; DNF: deciduous needleleaf forest; EBF: evergreen broadleaf forest; ENF: evergreen needleleaf
forest; GRA: grasslands; MF: mixed forest; OSH: open shrublands; SAV: savannas; WET: wetland; WSA: woody savannas.
considered missing in this study if the energy balance residual term
(i.e., the net radiation minus the sum of the latent heat, sensible heat,
and geothermal heat) exceeded 300 W m−2. Linear interpolation was
performed on the missing data if the data gap was less than 6 h in a
day. After the pre-processing step, the quality of the EC data used in
this study was strictly corrected, which ensured that the energy closure
was generally above 70% at all the different PFTs. Finally, the flux data
for each selected EC station were processed to a daily time series.

3.2. Inputs of the SiTHv2 model for global application

3.2.1. Remote sensing data
The dynamics of land vegetation are important to determine the

energy partitioning when estimating terrestrial ET. To characterize the
variation of vegetation growth, the LAI dataset (Version 50) from the
Global Land Surface Satellite (GLASS) product (Liang et al., 2021)
was used in this study. This LAI dataset was initially developed from
Moderate Resolution Imaging Spectroradiometer (MODIS) data with a
spatial resolution of 0.05◦ for the period of 2001–2018. Furthermore,
to depict the vegetation water content in the SiTHv2 model, we used a
VOD product from the VOD Climate Archive (VODCA), which is based
on microwave observations from multiple sensors and can be divided
into different spectral bands (Moesinger et al., 2020). The 0.25◦ daily
X-band VODCA product with a continuous coverage from 2001 to 2018
was used in this study.

The land surface net radiation data used in this study were de-
rived from the Clouds and the Earth’s Radiant Energy System (CERES)
project, which provides satellite-based observations of the Earth’s radi-
ation budget (Kato et al., 2018). Specifically, we selected the synoptic
top of atmosphere (TOA) and surface fluxes and clouds (SYN) product
and calculated the net surface radiation from the Level 3 SYN1deg
dataset with the up/down shortwave/longwave flux. In addition, the
global dynamic PFT distribution was obtained from the MODIS land-
cover product (MCD12C1) with a spatial resolution of 0.05◦ globally
(Sulla-Menashe et al., 2019). The main types of PFTs in the MCD12C1
product are in accordance with the International Geosphere–Biosphere
Programme (IGBP) land-cover classification system. The details of the
selected remote sensing data are summarized in Table 1.
5

3.2.2. Meteorological and ancillary data
The meteorological variables in the SiTHv2 model, including the

2-m air temperature (𝑇a), surface air pressure (𝑃a), and the total precip-
itation (𝑃tot), were obtained from the ERA5L product (Muñoz-Sabater
et al., 2021) produced by the ECMWF at a spatial resolution of 0.1◦. The
original half-hourly ERA5L product was selected in this study, followed
by aggregation to a daily scale to match the temporal interval in the
SiTHv2 model. The global soil type map used in the SiTHv2 model
was derived from the Harmonized World Soil Database (HWSD) v1.2
(Wieder et al., 2014), which combines the available soil information
from regional and national institutes worldwide and provides a soil
raster database with a 30 arc-second resolution.

3.3. Water balance based evapotranspiration data

In addition to evaluating the estimates of terrestrial ET at selected
flux sites, we also used independent ET estimates to test the SiTHv2
model at a basin scale. The water-balanced evapotranspiration esti-
mates (ETwb) were generated from the residual of the water balance
equation:

𝐸𝑇wb = 𝑃 − 𝑅 − 𝛥𝑆 (18)

where 𝑃 is the annual precipitation (mm year−1); 𝑅 is annual runoff for
each basin; and 𝛥𝑆 is the changes in terrestrial water storage. A total
of 49 basins from Ma et al. (2021) were selected, which represent a
broad range of climate zones and PFTs. The precipitation data were
acquired from the Global Precipitation Climatology Center (GPCC)
Full Data Monthly Product Version 2018 (Schneider et al., 2018) for
most basins, while the Parameter-elevation Regressions on Independent
Slopes Model (PRISM) precipitation data (Daly et al., 2008) were used
for basins in the continental United States because the PRISM product
is considered to be the most accurate precipitation product for the
United States (Lundquist et al., 2015). The measured runoff data for
these basins were obtained from the Global Runoff Data Center, the
China Sediment Bulletin, and the United States Geological Survey. The
𝛥𝑆 was extracted from the Gravity Recovery and Climate Experiment
data (GRACE, RL06M, Version 2.0) released by the Jet Propulsion
Laboratory (Wiese et al., 2016).
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Table 1
Summary of selected remote sensing products in current study.

Variable Product Version Spatial resolution Perioda Reference

LAI GLASS V50 0.05◦ 2001–2018 Liang et al. (2021)
VOD VODCA X-Band 0.25◦ 2001–2018 Moesinger et al. (2020)
Radiation CERES SYN1deg(L3) 1◦ 2001–2018 Kato et al. (2018)
Landcover MODIS MCD12C1 0.05◦ 2001–2018 Sulla-Menashe et al. (2019)

aThe time span shown here indicates the period used in the current study.
Table 2
Primary global terrestrial ET products used in this study for comparison.

IDa Category Theory Spatial resolution Time span Reference

GLEAM v3.5a Remote sensing based model 0.25◦ 1980–2020 Martens et al. (2017)
CR v1.0 Complementary relationship 0.25◦ 1982–2016 Ma et al. (2021)
FluxCom All ensemblesb in RS_METEO Machine learning 0.5◦ 2001–2013 Jung et al. (2019)
CMIP6 Ensemble mean of 20 modelsc Earth system model 0.5◦ 1979–2014 Eyring et al. (2016)
GLDAS v2.1/Mosaic LSM Land surface model 1◦ 1979–2020 Rodell et al. (2004)
ERA5L The 5th generation (land component) Reanalysis/land surface model 0.1◦ 1950–2021 Muñoz-Sabater et al. (2021)

aID used in this study.
bAll the ensembled latent heat flux estimates of 36 members with energy balance correction.
cDetails of the 20 ESMs are provided in the Supplementary information (Table S2).
.4. Comparative mainstream global ET products

Six mainstream terrestrial ET products were selected to compare
ith the ET estimates of the SiTHv2 model at a global scale. The

errestrial ET products used in this study were mainly derived from:
1) the Global Land Evaporation Amsterdam Model (GLEAM), which
s a widely used process-based ET model (Martens et al., 2017); (2)
he calibration-free complementary relationship (CR) model, which is
riven by meteorological forcing and is used to calculate ET from
he point view of atmospheric scope (Ma et al., 2021); (3) the FLUX-
OM initiative product, which is estimated based on flux observations
hroughout the globe and a data-driven machine learning method (Jung
t al., 2019); (4) the Global Land Data Assimilation System (GLDAS),
hich was developed to assimilate multi-source observations and sim-
lations of land surface models to generate credible surface states and
luxes (Rodell et al., 2004); and (5) ERA5L, which is a cutting-edge
lobal reanalysis product with a 0.1◦ spatial resolution and half-hourly
emporal interval (Muñoz-Sabater et al., 2021). Notably, the ET prod-
cts selected in this study were the most representative models or
roducts among the different types of ET estimates.

We also used ET simulations from the ensemble mean of the 20
arth system models in the Coupled Model Intercomparison Project
hase 6 (CMIP6) (Eyring et al., 2016), which is a mission led by
he World Climate Research Programme. In contrast to the above-
entioned global ET products, these ET simulations were derived by

n online Earth system, instead of meteorological forcing. The details
f these selected products are provided in Table 2.

. Results and discussions

.1. ET validation at the plot scale using ET observations

We validated the ET estimates of the SiTHv2 model at the 175 flux
tations and compared the results to those of the SiTHv1 model. The
aylor diagrams show the validation results for all the individual sites
Fig. 4a) and for the different PFTs (Fig. 4b). Moreover, the TS-score
as used for scoring the model performance, which is a comprehensive

ndicator derived from the statistics of model errors (Zhu et al., 2016).
Despite the comparable correlation coefficient ranges, the SiTHv2

odel is closer to 1 in terms of the normalized standard deviation (N-
td) than the SiTHv1 model (Fig. 4a). The violin plots in the bottom
anel demonstrate that the 25th to 75th percentile range of the TS-
core for the SiTHv1 model is 0.71 to 0.89, with a median value of
.82, whereas the 25th to 75th percentile range of the TS-score for the
6

SiTHv2 model is 0.82 to 0.93, with a median value of 0.88. Thus, when
all 175 global flux stations are used as a benchmark, the estimated ET
of the SiTHv2 model is more in line with the observations, and the TS-
score of the SiTHv2 model is approximately 7.3% more than that of the
SiTHv1 model. Furthermore, we also aggregated the ET estimates to the
PFT scale to test the model performance between SiTHv1 and SiTHv2.
Fig. 4b demonstrates that the correlation between the estimated ET of
the SiTHv2 model and the observed ET in the various PFTs is stronger
than that of the SiTHv1 model (except for EBF and SAV), with 𝑅-values
ranging from 0.80 to 0.90. In addition, the results of the SiTHv2 model
are more concentrated around the arc with N-std = 1, indicating that
the ET estimates of the SiTHv2 model are closer to the average of the
observations.

Furthermore, at least one representative site from each PFT was
selected to demonstrate the superiority of the SiTHv2 model with multi-
year monthly averages, which can make the contrast in the seasonal
variations in model performance even more clearer. As shown in Fig. 5,
it is evident that the SiTHv2 model improves the ET estimation to var-
ious extents for the different PFTs, with the reduction of RMSE values
ranging from 16.5% (RU-SkP, from 9.52 to 7.95 mm month−1) to 68.9%
(CN-HaM, from 13.36 to 4.15 mm month−1). This is mostly due to
the modified soil water constraint scheme implemented in the SiTHv2
model, which accounts for the influence of VOD and the relocation of
roots in different soil layers, thereby reducing the over-estimation of
the old version in most cases.

To further demonstrate the performance of the new version
(SiTHv2), we ran the PT-JPL model (Fisher et al., 2008) and the MOD16
model (Mu et al., 2011) on these selected sites and calculated their per-
formance at the PFT level separately (different colored backgrounds) as
a side-by-side comparison, in addition to the internal comparison be-
tween SiTHv2 and SiTHv1. As shown in Fig. 6, the performance of the
different models shows a high degree of PFT-specific variation, which
can be attributed to the different model structures. Among the different
models, the RMSE of the SiTHv2 model is generally the smallest across
the 12 kinds of PFTs, compared to the other models, with the median
values ranging from 0.48 to 0.83 mm day−1. The average median value
of the RMSE in all the PFTs for the SiTHv2 model is 0.66 mm day−1,
while that for the SiTHv1 model is 0.90 mm day−1, which suggests
that the overall accuracy of the SiTHv2 model is improved by around
27% when compared to the SiTHv1 model, in terms of RMSE statistics.
Furthermore, the performance of the PT-JPL model is close to that of
the SiTHv2 model in most PFTs, with an average RMSE median value of
0.82 mm day−1. Meanwhile, the MOD16 model shows a wide range of
variability across the multiple PFTs, with the median value of the RMSE
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Fig. 4. Validation of the ET estimates of the SiTHv2 and SiTHv1 models at individual sites (a) and at the PFT scale (b). The 𝑦-axis indicates the normalized standard deviation
(N-std) with observed values as the target, the arcs represent the Pearson correlation coefficients (𝑅), and the black dot on the 𝑥-axis represents the observed benchmark value.
Fig. 5. Comparison of the model improvements for typical sites in different PFTs. The green line is the observed ET at each flux site, while the red and gray lines represent the
outcomes of the SiTHv2 and SiTHv1 models, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
ranging from 0.62 to 1.29 mm day−1, despite it performing better in
the DBF and EBF areas.

Consequently, based on the ground benchmark of EC observations
from a total of 175 flux stations, it is confirmed that the SiTHv2
model can provide more accurate ET estimates across the different
PFTs, compared to the SiTHv1 model, and it also performs well when
compared with the PT-JPL and MOD16 models.
7

4.2. ET validation at the basin scale using 𝐸𝑇wb

Unlike the use of ground-based data to validate the performance
of models at the plot scale, the grid-based terrestrial ET estimates are
commonly subject to the limitation of the uncertainty for the scale
effect, which is caused by the spatial mismatch between the simulated
ET grid and the ground-based flux footprint. Therefore, we used the
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Fig. 6. Box plots of the RMSE values when evaluating the modeling results of the SiTHv2, SiTHv1, MOD16, and PT-JPL models against 175 EC stations in different plant functional
types.
Fig. 7. Evaluation of the simulated ET (𝐸𝑇sim) from the SiTHv2 model based on the water-balanced ET (𝐸𝑇wb) at 49 basins over the period of 2003 to 2013 (the same overlapping
time span as the other ET products in Fig. 8). (a) Scatter plot between the 𝐸𝑇sim and 𝐸𝑇wb with statistics. The unit of RMSE is mm year−1. (b) The spatial distribution of the
multi-year averaged ET rates relative to the 𝐸𝑇wb of the 49 basins. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
independent water-balanced ET data to validate the generated ET
outputs at the basin scale. As described in Section 3.4, the magnitude of
the ET in the major global basins was derived from the water balance
equation, based on ground or remotely sensed observations of runoff,
precipitation, and changes in terrestrial water storage.

Fig. 7a illustrates the scatter plot linear regression between the ET
estimates of the SiTHv2 model (red) and SiTHv1 model (blue) for these
basins against the water-balanced ET (𝐸𝑇wb) over the period from 2003
to 2013. It can be found that the ET estimated by the SiTHv2 model
is generally more consistent with the 𝐸𝑇wb than that estimated by
the SiTHv1 model, with a higher correlation (𝑅 = 0.96) and smaller
8

deviation (RMSE = 98.58 mm⋅year−1). Furthermore, the SiTHv2 model
shows an improvement of nearly 0.1 compared to the SiTHv1 model in
terms of the Nash–Sutcliffe model efficiency coefficient (NSE).

The ratio of the simulated ET (SiTHv2) to 𝐸𝑇wb was also calculated
to highlight the spatial distribution of the over- or under-estimation
of the ET estimates, with 𝐸𝑇wb as the benchmark. In the majority of
basins, the difference between the estimated ET obtained by the SiTHv2
model and 𝐸𝑇wb is fairly minimal, with ratios ranging from 0.8 to 1.2.
Meanwhile, it can be found that the ET estimated by the SiTHv2 model
exhibits a certain degree of over-estimation, of up to double the corre-
sponding 𝐸𝑇 in basins at high latitudes in the Northern Hemisphere
wb
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Fig. 8. Regression plots of the yearly simulated ET rates from the six primary global ET products relative to the 𝐸𝑇wb at 49 basins during their overlapping temporal coverage
from 2003 to 2013. The length of the error bar represents the interannual variability of the ET in each basin. The gray dashed line represents the 1:1 line, while the black line
shows the regression line, with the corresponding regression equation shown in the bottom.
(e.g., Siberia and Northern Canada). Indeed, the freeze-thaw processes
at high latitudes have a direct effect on soil water content, which in turn
influences the ET process (Niu and Yang, 2006). However, the current
process-based ET model lacks a meaningful connection of the freeze-
thaw process and the vast amount of measurable data for calibration
(such as subsurface ice), which makes accurate estimation of ET in
these specific regions a challenging task.

Moreover, we also selected six mainstream global terrestrial ET
products for a side-by-side comparison with the SiTHv2 model at the
basin scale (Fig. 8). The correlation relationship (𝑅) between all the ET
products and 𝐸𝑇wb is very high, with a range of 0.93 to 0.97, which
indicates the good consistency in the spatial variability of these ET
products across the selected basins. However, the accuracies of these
ET products are relatively diverse, with the GLDAS product having
the largest RMSE (164 mm year−1) and the smallest NSE (0.71). In
contrast, the CR product performs the best, with the smallest RMSE
(81.83 mm year−1) and the largest NSE (0.93) among these products,
which are similar results to those of the SiTHv2 model obtained in
this study. Meanwhile, the FluxCom ET product was produced using
substantial ground-based flux data with machine learning technology,
and shows high correlation (𝑅 = 0.97) with the derived 𝐸𝑇wb across
the different basins. However, this product shows some over-estimation
for 𝐸𝑇wb in the basins with an arid or cold climate, which are often
characterized by low ET values. The performance of the GLEAM prod-
uct is similar to that of the SiTHv1 model, with an RMSE value of
128.21 mm year−1 and an NSE value of 0.82. However, the results of
the GLEAM product are significantly higher than the results of the other
models in basins with a humid climate (e.g., the Amazon region), where
the maximum value exceeds 1500 mm year−1. In terms of statistical
indicators, the CMIP6 product’s RMSE (90.56 mm year−1), 𝑅 (0.97),
and NSE (0.91) values are in the upper-middle level in the overall
range, but the lowest slope (0.86) and the largest intercept (110.07 mm
year−1) are found among these model statistics. This indicates that the
ET estimates of the CMIP6 product are significantly under-estimated
at high values and over-estimated at low values in these basins. The
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results of the ERA5L product also yield a relatively high NSE value
(0.87) and an RMSE value of 110.14 mm year−1, which are similar to
the results of the FluxCom product. Nevertheless, despite the ERA5L
product achieving a slope value of 1, its intercept is rather large
(72.57 mm year−1), implying an overall over-estimation in these 49
basins, relative to 𝐸𝑇wb.

It is necessary to emphasize that the different spatial resolutions and
production methods of these global ET products lead to differences in
capturing the spatial details of terrestrial ET, although their statistical
metrics are similar at the basin scale. In general, the terrestrial ET
estimated by the SiTHv2 model is in good agreement with the 𝐸𝑇wb
at the basin scale, and the performance is also at a superior level when
compared to the primary global ET products available at present.

4.3. Global comparison of ET magnitude and trend analysis

The global distribution of the multi-year (2001–2018) mean ET
estimated by the SiTHv2 model is displayed in Fig. 9a. The estimated
terrestrial ET exhibits a clear and reasonable geographical distribution,
with the maximum ET appearing in the tropics around the equator
(1200–1500 mm year−1), followed by the temperate humid regions
(600–1200 mm year−1), and then the alpine and high-latitude areas
(300–600 mm year−1), and the lowest ET is found in the desert and
ice regions (< 100 mm year−1). The latitudinal profile of the estimated
ET derived by the SiTHv2 model is in close agreement with the highest
confidence curve (Fig. 9b), which indicates that the SiTHv2 model is
effective in capturing the variance in global terrestrial ET at different
latitudes. However, the ET profile estimated by the SiTHv2 model is
positioned lower than that of the other ET models in regions south of
40 ◦S. This may be related to the increased uncertainty of the ERA5-
based precipitation in South America (Xiong et al., 2022), especially
since the assimilation system hardly corrects the systematic bias in the
solid precipitation (i.e., snowfall), due to the insufficient observations
(Muñoz-Sabater et al., 2021).
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Fig. 9. (a) Spatial distribution of the multi-year average terrestrial ET from 2001 to 2018. (b) The latitude-averaged profile of the terrestrial ET corresponds to the panel, where
the red line represents the estimates of the SiTHv2 model, and the background range is obtained from the selected primary global ET products (see Table 2), with the gradient
color representing the confidence range (± standard deviation) of the different global ET products. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
At the global scale, the magnitude of the total terrestrial ET es-
timated by the various global ET products is a crucial comparative
indicator. To compare the estimated terrestrial ET volumes, we used
the overlapping period from 2001 to 2013, which covers the time span
for both the SiTH-based ET estimates and the other ET products. As
shown in Fig. 10a, the SiTHv2 model estimates a total annual mean
terrestrial ET of 70.3± 0.6 × 103 km3, which is very close to the GLEAM
estimate (70.4 ± 0.8 × 103 km3) and represents a 6.4% increase over the
SiTHv1 model (66.1±0.6×103 km3). The results of these three datasets,
together with CMIP6, are lower than the average value (71.5×103 km3)
of all the selected global ET products, whereas the estimated ET of
the remaining four products is higher than the average value, with the
CR (73.0 ± 0.7 × 103 km3) and GLDAS (72.1 ± 3.7 × 103 km3) products
being closest to the average, and the FluxCom product occupying the
highest position (77.6 ± 0.3 × 103 km3). In comparison, the reported
volume of the terrestrial ET derived from the different models/products
in previous studies has primarily ranged from 65 × 103 km3 to 75 ×
103 km3, with individual values of 65.5 × 103 km3 (Oki and Kanae,
2006), 65 × 103 km3 (Jung et al., 2010), 67.9 × 103 km3 (Miralles et al.,
2011), 74.3×103 km3 (Zhang et al., 2015), 72.8×103 km3 (Zhang et al.,
2019a), and 71.1×103 km3 (Zeng et al., 2014). More recent studies have
tended to yield ET volumes in excess of 70× 103 km3. Furthermore, the
energy balancing strategy seems to be more likely to estimate greater
ET volumes, with the magnitude of the global terrestrial ET estimate
being up to around 75 × 103 km3 (Jung et al., 2019; L’Ecuyer et al.,
2015; Wild et al., 2015). In addition, it is worth noting that the time
span of the above-mentioned ET statistics varies across the different
studies.

We divided the global terrestrial ET estimates into five main types
based on the Köppen climate classification system (see Fig. S1 in the
Supplementary information), namely, tropical zone, dryland zone, tem-
perate zone, continental zone, and polar and alpine zone, to compare
the differences of the multiple global ET products under the different
climatic conditions over the globe. The ET volumes estimated by the
different products are more or less equivalent to the average value
(32.6±1.4×103 km3) in the tropical zone (Fig. 10b), except for the CMIP6
product, which displays obvious under-estimation (29.6±0.1×103 km3).
However, the performance of the different ET products in the arid zone
varies considerably (Fig. 10c), among which the ET estimate from the
FluxCom product (12.9 ± 0.2 × 103 km3) is the highest, compared to the
10
others. The ERA5L and CR products obtain comparable ET volumes in
the dryland zone (around 10±0.6×103 km3 to 10.5±0.4×103 km3), while
the result of the SiTHv2 model is similar to that of the GLEAM product,
with 8.8±0.5×103 km3. Unlike the tropical zone, it is interesting to note
that the ET estimate of the CMIP6 product is the second highest for the
dryland zone, at 12.5 ± 0.1 × 103 km3.

For the temperate zone (Fig. 10d), the ERA5L product shows the
highest ET estimate (16.3 ± 0.2 × 103 km3), whereas the lowest ET
volume is estimated by the SiTHv1 model (13.5 ± 0.1 × 103 km3). The
ET estimates from the FluxCom and GLDAS products in the temperate
zone are much higher than the overall average, with values of 16 ±
0.1 × 103 km3 and 15.7 ± 0.7 × 103 km3, respectively. However, the ET
estimates from the GLEAM, CR, and CMIP6 products and the SiTHv2
model are substantially lower, ranging from 14.5 ± 0.1 × 103 km3 to
15.0±0.2×103 km3. In the context of continental climatic conditions with
considerable daily and annual air temperature variations, the SiTHv1
model tends to under-estimate the volume of ET (10.6 ± 0.2 × 103 km3),
compared to the other terrestrial ET products (Fig. 10e). In the SiTHv2
model, the estimated total ET for the continental climate zone is 11.8±
0.3×103 km3, which is comparable to the 11.5±0.1×103 km3 for the CR
product and the 11.7 ± 0.1 × 103 km3 for the CMIP6 product. The four
remaining products generally estimate higher ET values exceeding the
average (12.2 ± 0.9 × 103 km3) in the continental climate zone, ranging
from 12.7 ± 0.2 × 103 km3 (GLEAM) to 13.2 ± 0.2 × 103 km3 (ERA5L).

Lastly, the total ET volume in the polar and alpine zone (Fig. 10f) is
much lower than in the other zones, due to the reduced solar radiation,
lower temperature, and lack of vegetation cover. Nonetheless, the vari-
ous ET products exhibit a degree of variability, with the CMIP6 product
yielding the highest ET volume of 2.3±0.01×103 km3, and the smallest
volume of ET is estimated by the SiTHv1 model (1.47±0.01×103 km3).
The ET volume estimated by the SiTHv2 model (1.93 ± 0.02 × 103 km3)
for the polar and alpine zone is very close to that of the ERA5L product
(1.92±0.03×103 km3). Comparatively, the GLEAM (1.64±0.03×103 km3),
FluxCom (1.68 ± 0.003 × 103 km3), and GLDAS (1.67 ± 0.1 × 103 km3)
products yield similar ET volumes that are slightly less than the overall
average (1.78 ± 0.4 × 103 km3) for this zone.

The trend of annual global terrestrial ET estimated by the SiTHv2
model from 2011 to 2018 is 0.41 mm year−1 (𝑝 < 0.05), while the trend
for the SiTHv1 model is 0.38 mm year−1 (𝑝 < 0.05) (Fig. 11). It should
be emphasized that the valid periods for the comparable ET products
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Fig. 10. Comparison of the multi-year average terrestrial ET volume for (a) the global scale, (b) the tropical zone, (c) the dryland zone, (d) the temperate zone, (e) the continental
zone, and (f) the polar and alpine zone for the period of 2001 to 2013. The error bar represents the standard deviation of the annual values of the ET estimates for each product.
The gray gradient range represents the mean of all the products plus/minus their standard deviations. The climate zone classification is in accordance with the Köppen climate
classification system.
Fig. 11. Trends in global terrestrial ET from 2001 to 2018. The red line and gray line represent the trend of the ET anomalies from the SiTHv2 and SiTHv1 models, respectively.
The gradually varied interval is the confidence range of the ensemble mean values derived from the multiple ET products, except for SiTH, and the upper panel indicates the valid
periods for the products used in this study. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
differ, and their overlapping period in this study spans from 2001 to
2013. As a result, the confidence interval shrinks after 2013 because
of the decreased contribution from the various global ET products.
Both versions of the SiTH model demonstrate a strong correlation with
the ensemble mean of the multiple ET products (which excludes the
SiTH-based ET estimates), indicating that the anomaly trend of the
11
SiTH-based ET is realistic, and can be used to achieve credible trend
analysis for historical periods. Moreover, the SiTHv2 model is more
consistent with the ensemble mean value of the multiple ET products
in the details, compared to the SiTHv1 model. In summary, the global
terrestrial ET produced by the SiTHv2 model outperforms that of the
SiTHv1 model, and the SiTHv2 model can provide reliable ET estimates
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Fig. A.1. Posterior distributions of D50 and D95 in the different PFTs. The boxes represent the 75% credible interval, and the horizontal line represents the median value.
in terms of global spatial distribution, latitudinal profile, and multi-year
ET volumes, for both a global scale and the various climate zones, as
well as the anomaly trend of terrestrial ET.

Nonetheless, the SiTHv2 model still has some limitations and de-
ficiencies that will require further enhancement in the next stage.
Although the current spatial resolution reaches 0.1◦, which is globally
in line with the ERA5L product, a finer spatial resolution is important
for local-scale applications. To this end, downscaling schemes such as
sub-grid optimization could be an efficient way to generate finer ET
estimates by combining the advantages of multi-source reanalysis and
satellite forcing data with different spatial resolutions. Also, for the
current version, the IWU is regarded as additional rainfall only loosely
coupled to the SiTHv2 model, which can ensure water availability to
irrigated regions at the monthly/yearly scale (limited by the monthly
IWU estimates), but makes it difficult to characterize the irrigation
recharge at a fine temporal scale. Together with the challenge of
representing specific irrigation modes, i.e., sprinkler, drip, or flood
irrigation, these factors will increase the uncertainty in the simula-
tion of soil water dynamics. Hence, to assimilate satellite-based soil
moisture into the simulation would be a more direct way of characteriz-
ing realistic surface water conditions, and further improving cropland
ET estimation. In addition, the current model is only applied to the
simulation in the vertical direction, without the interaction from the
neighboring grids. By introducing topographic factors (e.g., elevation,
slope, and aspect) to describe the lateral water flow between adjacent
grid cells, this would enhance the simulation of the SiTHv2 model
to three dimensions, and could thus greatly expand the application
potential at the basin level.

5. Conclusions

This study was dedicated to improving the ET simulation in the
SiTH model within the GSPAC. We enhanced the vegetation mois-
ture constraint module by coupling satellite-based VOD measurements.
Moreover, a dynamic adjustment scheme for the critical threshold
of soil water content based on different canopy heights and specific
environmental conditions was applied in the SiTHv2 model. The ex-
tended soil layer with re-optimized root distribution parameters was
used to better characterize the effect of soil water dynamics on the ET
simulation. We also added an irrigation water strategy as extra input
water applied in the croplands zone. In addition, the meteorological
forcing data in the SiTHv2 model were updated to the state-of-the-art
ERA5L reanalysis product.
12
Validations against 175 EC stations and water balance data from 49
large river basins suggested that the SiTHv2 model is more accurate
and has less uncertainty than the SiTHv1 model at both plot and
basin scales. Further multi-product evaluations using the water balance
approach also demonstrated that the SiTHv2 model ranks well when
compared to most of the mainstream ET products. Lastly, a side-by-
side comparison at the global scale indicated that the SiTHv2 model is
consistent with the ensemble mean results of the multiple terrestrial ET
products, both in terms of magnitude and trends. This newly improved
SiTH model will provide the necessary framework for estimating ET
from the GSPAC, and will promote better support for exploring land–
atmosphere feedback loops, ecosystem water consumption, and related
ecohydrological studies.
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